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I. Summary of Final Report 

A. Advisor Contact Information: 

 

ECE Senior Design Coordinator: 

Dr. Geoffrey Brooks 

(850) 770-2247 

gbrooks@pc.fsu.edu 

 

 

MEE Senior Design Coordinator: 

     Dr. Damion Dunlap 

     (850) 770-2204 

     ddunlap@fsu.edu  

 

Roboboat Technical Advisor:  

     Dr. Joshua Weaver 

     jnweaver@fsu.edu  

 

 

B. Roboboat - Development Team 

Mechanical Design Lead - Brandon Bascetta 

Manufacturing Lead - Courtney Cumberland 

Software Lead - Mark Hartzog 

Software/Hardware Integrator - Peter Oakes 

Hardware Developer - Madison Penney 

Systems Lead - Toni Weaver 

 

C. Project Summary 

  

The overall objective of this project was to develop and manufacture a working boat complete with 

sensors and basic software that can compete in the Roboboat competition. This goal was intended to be 

achieved by completing three different subprojects. These included software development, hardware 

development, boat design and manufacturing. Figure 1, shown below, displays the functional 

decomposition of the project. This project focused primarily on the left three branches of the image.  

mailto:gbrooks@pc.fsu.edu
mailto:ddunlap@fsu.edu
mailto:jnweaver@fsu.edu


2 of 61 
 

 
Figure 1. Functional Decomposition of the project. 

 

i. Boat Design and Manufacturing 

 Utilizing the engineering design methods to meet the customer’s needs and comply with 

competition rules, a larger, more stable boat than the previous year’s boat was designed for this year’s 

competition. Therefore, a new boat was constructed. A fiberglass and epoxy resin composite were chosen 

as the primary material thus, the hand lay-up method of construction was implemented to manufacture the 

hull of the boat as well as the lids. The final CAD design of the boat was created in SolidWorks. The overall 

size and weight of the vessel is constrained by the Roboboat rules. This boat will have a length of 50”, 

width of 30” and height of 30” and an estimated weight of approximately 22.67 lbs. excluding the electrical 

components. 

 

ii. Hardware Development 

The hardware design essentially took each respective sensor and wired and placed them in the most 

optimal position of the vehicle. Because of the nature of some of the sensors, it was imperative that they 

were calibrated and placed in strategic locations to be implemented properly so that they could generate 

helpful data. 

 

iii. Software Development 

The software team was responsible for bringing life to the hardware components to make them 

serve a functional purpose. Using the Robot Operating System (ROS), as our middleware platform, we 

tapped into pre-existing algorithms that are often tailor made for our sensors creators themselves. Using 

these algorithms and the tools in the lab we wrote our own software to create a functional system with each 

piece of software working in tandem to create a large and unique data set making the vehicle mobile. 

 

D. Project Motivation 

The Roboboat competition is an international robotics competition that focuses on allowing young 

engineering students to create solutions for some of the most difficult and challenging electrical, and 

computer engineering challenges. The tasks themselves include using custom algorithms to allow the boat 

to autonomously solve puzzles. For example, some of the tasks include navigating a channel of buoys, 
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finding a path through a field of obstacles, or performing a speed test to exhibit the vehicle’s power. The 

specific duties of the software team are to take the powered sensors and setup their respective firmware, 

and drivers, in addition to wiring them and using their data sets to produce logic solving with algorithms. 

These algorithms, as mentioned previously, will allow the tasks required by the competition to be solved 

autonomously. Using the experiences from last year, the team will optimize the algorithms to enhance their 

performance which will allow the vehicle to exhibit better run times. Algorithms, data processing and 

publishing will be implemented primarily through the ROS environment. 

E. Roboboat Development Team Goals: 

 

- Properly setup the drivers and various sensors and modules on the vehicle 

- Create a functional data set generated by the various sensors 

- Send the generated data to ROS (Robotic Operating System) 

- Create data connections in ROS so the sensors can communicate to one another 

- Import the data to custom executables and scripts to create logic solutions and data manipulation 

- Create algorithms consisting of the modified data set 

- Give the motors commands based upon the logic and algorithms being implemented 

 

F. Roboboat Project overview 

 

i. Spring 2020 

a. Setup and integrate hardware using the PE’s power box. This included driver 

installation, manufacturer packages and firmware.  

b. After  the first step was complete, the sensors data generation methods were 

calibrated, and the heat displaced by them regulated by placing them in strategic 

positions. 

c. The IMU was placed in an area that caused the least magnetic interference on the 

test boat. 

d. The LiDAR was placed on the top of the test boat to maximize the visible areas 

and ranges. 

e. The camera was placed in the front of the test boat to maximize obstacles detection. 

f. After these steps were completed, the data was further calibrated and optimized 

and then sent into ROS once more. 

g. The boat hull design was finalized in CAD.  

h. The boat size was finalized at 30” X 50” x 25”. 

i. The boat hull mold was finished using 1” and ½” foam, spray foam, modeling clay 

and packing tape. 

j. A modular fin design was created to attach the thrusters to and mount on the bottom 

of the pontoons. 

k. Software was developed to drive the boat using motor mixing. 

l. Software was developed to allow the boat to be driven using the RC controller.  
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ii. Summer 2020  

a. Test the power system to ensure all voltages are outputting correctly. 

b. Each necessary sensor was connected to the power system. 

c. The data collected in the first stage will be imported into ROS executable (nodes). 

d. The LiDAR (Light Detection and Ranging sensor) and IMU (Inertial Measurement 

Unit) sensors were integrated into the ROS environment. 

e. Code was created to complete the mandatory navigation channel task.  

f. Sensor data was combined with navigation algorithms to allow the boat to perform 

basic obstacle avoidance.  

g. The boat hull was manufactured using hand laid fiberglass.  

h. Sensor mounts were created using CAD software. 

i. The boat software, sensors and hull were tested in water. 

 

II. Boat Design and Manufacturing Information 

The following section will provide information regarding the design process as well as the 

manufacturing plan for the boat hull. The Mechanical team has been designing the boat since the Fall of 

2019 by going through a set of decision matrices outlined in the Design Process section. The physical 

manufacturing of the boat is covered in the Manufacturing Process section. 

A. Design Process 

Starting in the Fall of 2019, the Mechanical Engineers completed a series of design matrices to aid 

in the decision-making process. The first process done was generating a customer requirements document 

based upon the needs of the previous year’s Roboboat team. With their experience of being at the 

competition, they were able to provide valuable feedback on what was needed with respect to the physical 

design of the boat. From this information gained from the previous team, customer needs were generated 

from their feedback. These customer needs were put into a binary piecewise comparison chart to determine 

the weights of each criteria as seen in Table 1.  

 1 2 3 4 5 6 7 Total 

Stability - 1 0 1 1 1 1 5 

Aesthetics 0 - 0 1 1 1 0 3 

Maneuverability 1 1 - 1 1 1 1 6 

Modularity 0 0 0 - 0 1 0 1 

Deck Space 0 0 0 1 - 1 1 3 

Manufacturability 0 0 0 0 0 - 1 1 

Speed 0 1 0 1 0 0 - 2 

 

Table 1. Binary piecewise comparison weights from the customer needs feedback. 
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 A generation of 100 concepts were then made to have multiple ideas to work with when coming up 

with multiple concept assemblies. Four main concept assemblies were generated from the 100 concepts that 

the Mechanical Engineers thought would best work with customer needs. These concepts with the different 

combinations of concepts can be seen in Table 2. 

 

 Hull 

Super Structure 

(Material) Propulsion 

Sensor 

Mount 

Cooling 

System  Connection 

Concept 1 Cat/Mono Same Material Differential Spider Rail Active N/a 

Concept 2 Cat/Mono Modular Differential Spider Rail Active Grenade Pins 

Concept 3 Long Cat Same Material Differential Spider Rail Active N/a 

Concept 4 Long Cat Modular Differential Spider Rail Active Snap Down 

 

Table 2.  Medium fidelity concept generation. 

 

 In this medium fidelity concept generation, the “Hull” section refers to the shape of the hull with 

“Cat/Mono” referring to a catamaran and mono hull hybrid and “Long Cat” referring to a long catamaran 

as the hull. The “Super Structure (Material)” refers to whether or not the component space was either 

modular or integrated into the hull; “Same Material” refers to the super structure being integrated into the 

hull while “Modular” refers to it being removable. The “Propulsion” section refers to the configuration for 

the propulsion system; “Differential” is a differential drive configuration. For the “Sensor Mount” section, 

this refers to the way the sensors were to be attached; “Spider Rail” refers to an adjustable and modular 

design to attach the sensors to the hull. “Cooling System” refers to the way in which the component space 

will be cooled off to avoid overheating; “Active” refers to a forced convection system that intakes outside 

air and expels internal air. “Connection” refers to the way a modular super structure would be attached to 

the hull; “Grenade Pins” and “Snap Down” are two connection types that would be used to connect the hull 

and the super structure. The four concept assemblies’ sketches can be seen in the images below. 

 

 
 

Image 1. Concept 1: A catamaran monohulled hybrid with an integrated super structure, spider rail 

sensor mount, and differential thrust. 
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Image 2. Concept 2: A catamaran monohulled hybrid with a modular superstructure, spider rail sensor 

mount, and differential thrust. 

 

 
 

Image 3. Concept 3: A long catamaran hull with an integrated super structure, spider rail sensor mount, 

and differential thrust. 

 

 
Image 4. Concept 4: A long catamaran hull with a modular super structure, spider rail sensor mount, and 

differential thrust. 
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 Working from these four main concepts, they were compared to a datum, that datum being the 

competition boat from 2019. This can be seen in the Pugh charts in Table 3 and Table 4. 

 

Selection Criteria DATUM (Wilson) 1 2 3 4 

Stability  + + + + 

Aesthetics  + + + + 

Maneuverability  + + + + 

Modularity  S + S + 

Deck Space  + + + + 

Manufacturability  + + + + 

Speed  + + + + 

Number of +'s  6 7 6 7 

Number of -'s  0 0 0 0 

 

Table 3.  Pugh chart of concepts 1-4 compared to the 2019 competition boat. 

 

 

Selection Criteria DATUM (Concept 4) 1 2 3 

Stability  S S S 

Aesthetics  S S S 

Maneuverability  + + S 

Modularity  - S - 

Deck Space  + - S 

Manufacturability  - - - 

Speed  + + + 

Number of +'s  3 3 1 

Number of -'s  2 2 2 

 

Table 4. Pugh Chart of concepts 1-3 against the new datum, concept 4. 
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Based upon the results of the Pugh chart, concepts 1 and 2 both performed better than the new 

datum, being concept 4. To further analyze the best design combination, they were then put into a house of 

quality shown in Table 5. 

 

Customer Requirements Importance Weight Factor Concept 1 Concept 2 Concept 3 Concept 4 

Stability 5 3 3 3 3 

Aesthetics 3 3 3 3 3 

Maneuverability 6 1 1 3 3 

Modularity 1 0 9 0 9 

Deck Space 3 9 3 1 0 

Manufacturability 1 3 3 9 9 

Speed 2 3 3 1 1 

Raw Score: 189 66 57 56 62 

 

Table 5. The house of quality that scores each concept based upon the customer criteria weights from the 

binary piecewise comparison table. 

 

 Based upon the results from the house of quality, concept 1 became the design the team moved 

forward with. A higher fidelity model was generated in SolidWorks to create a 3-dimensional visualization 

which can be seen in image 5. 

 

 
 

Image 5. High fidelity CAD drawings of the boat that are based upon concept 1’s attributes. 

 

 With this design now created in SolidWorks as a baseline, the actual dimensions needed to be 

finalized. From the competitions guidelines of the boat having to be 3’ x 3’ x 6’ and not weighing more 

than 140 lbs. Two cardboard prototypes of a tweaked design of the hull were made to see how much space 

was available for components and immediately it was noticed that the boat was too big being 32” x 60” for 

the hull’s length and width. A new scale version of the boat was created with the dimensions being 30” x 

50” x 25” and the team agreed that this was more suitable for the final scale of the boat. The boat was then 
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recreated in CAD with the scale the team agreed upon. Other components were added to the CAD drawings, 

such as a modular fin-thruster attachment, latches and hinges for a lid access to the component space, fans 

for active cooling, and a gasket for waterproofing the interior around the lid. The final design is shown in 

Image 6. 

 

 
 

Image 6. Final CAD drawing of the boat hull design. 

 

 The next goal is to design sensor mounts for the CAD model in SolidWorks that are able to be 

modular, adjustable, and future proof. For the mounts to be modular, they need to be able to support 

different sensors in case other sensors want to be used. For the mounts to be adjustable, the design must be 

able to support varying translations and rotation of where it is mounted in case the sensors need to be moved. 

The sensor mounts also have to be future proof and in order for that to be accomplished, they must be easily 

manufactured in case if replacements are needed for any broken parts and also durable enough to withstand 

normal use by using higher strength materials. As far as manufacturing of the parts goes, the plan is to 3D 

print the parts with a combination of PLA and PETG since both are easily attainable and have great 

mechanical properties. 

 

B. Manufacturing Process 

Once the final boat hull was finalized and a SolidWorks CAD model was complete, the 

manufacturing process could begin. Initially, the material selection process was completed, and multiple 

materials were considered. A fiberglass/epoxy resin composite was chosen due to its low cost, easy 

manufacturability, anti-corrosiveness, and high strength to weight ratio. Specifically, a 6-ounce plain weave 

was chosen. “Because the fiber orientation directly impacts mechanical properties, it seems logical to orient 

as many of the layers as possible in the main load-carrying direction. While this approach may work for 

some structures, it is usually necessary to balance the load-carrying capability  in several different 

directions, such as the 0°, +45°, -45°, and 90° directions.” [1] The Ship Structure Committee 403 was 

referenced to learn more about fiberglass and specifically how grainline orientation of the cloth is important 

to providing strength. Image 7 shows the grainline direction on the actual cloth while image 8 is an 

illustration of different grainline orientations and a proper lay-up configuration. 
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Image 7. Grainline orientation on actual cloth  Image 8. Illustration of grainline orientation 

Specifically, 3 layers of 6-ounce plain weave in varying grainline directions, 0°, 45°, 90° and one 

layer of fiberglass mat that is omnidirectional was selected.  This layer configuration was selected after 

samples of differing layer numbers and grainline directions were produced. The selected lay-up 

composition achieved the best performance in practice tests.  

Since a fiberglass composite was chosen, the construction method consisted of a hand lay-up 

process. For this process, a foam mold was constructed for the hull and the two lids separately using the 

dimensions from the CAD model. The boat mold can be seen in image 7. The fiberglass layers were 

individually applied to cover the mold and the epoxy resin was applied thus saturating the cloth, and the 

excess resin was squeegeed out. Image 8 shows the process of applying the resin to the cloth. Once the resin 

cured in about 12-15 hours, the rough edges were sanded down, and another layer was applied. When all 

layers had been applied the mold was removed. Two ½ inch thick layers of foam cut 4” x 30 “ were placed 

in the pontoon portion of the hull. Finally, the exterior was painted with a moisture resistant paint and a 

moisture resistant tape was applied to the interior edges of the pontoon.  

It is important to note that prior to producing the actual boat, the entire process was practiced by 

building small sample boats molds of foam and then the hand lay-up process was followed. Fiberglass 

construction includes many nuances that are only learned with experience. Technical details such as the 

working resin time, resin/hardener mixing ratios,  how important it is to firmly secure the mold to a support 

and when to trim the excess composite materials were details that were improved with every sample. Having 

practiced on sample boats ultimately led to a superior final boat hull. 
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Image 9. The boat mold floating with 12 lbs. of weight applied 

 

 
 

Image 10. Hand Lay-Up of Fiberglass 

III. Hardware 

The following section will provide information on the original plan for the wiring and integration 

of the hardware, in addition to the changes and actual work completed in the wiring and integration of the 

devices. An updated schematic and component list will also be presented to reflect the work done, along 

with the power requirements for the devices used. 
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A. Original Concept  

In image 11 below, the original wiring and assembly diagram of the hardware is shown. The red 

lines represent the power connections, the blue lines represent the Ethernet connections, the green lines 

represent the serial connections, and the black lines represent data out. Four LiPo 4S batteries were to be 

connected to the power box, that was developed by a previous Senior Design Team, with 12 AWG wire, 

which in turn will supply the appropriate power requirements to each component through 20 AWG wire. 

The components were the Arduino MEGA board just above the power box, the ASUS router in the middle 

of the right side of the diagram, the LiDAR databox right above the router, the Intel Simply NUC computer 

on the top right, the NVIDIA Jetson Xavier on the top left, the Universal Serial Bus hub under the left 

computer, and the two electronic speed controllers (ESCs) on the left and right sides of the diagram. The 

router provides Ethernet connections to the two computers and LiDAR databox, and Wi-Fi to the ground 

station computer. Unlike the other components, the electronic speed controllers were to be connected to the 

power box through 12 AWG wire and also connected to the thrusters while receiving pulse width 

modulation (PWM) signal from the Arduino in order to control the thrusters. 

 
 

Image 11. The original wiring schematic and layout of the components and sensors. 

B. Final Layout & Design 

Working up to testing, certain components were changed or taken out of the system. To help reflect 

these changes, image 12 is provided below to illustrate the final wiring and assembly of devices. The red 

lines still represent the power connections, blue lines are the Ethernet connections, green lines are the serial 

connections, and the black lines represent data out. Image 13 shows the original list of components and the 

final list of components used, while also marking the changes between the two lists. One of the changes 

made was the switch from using a Jetson Xavier to another Simply NUC for one of the onboard computers 
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(both onboard computers were Simply NUCs). To power both computers, instead of using the power box, 

the two Simply NUCs were each connected to a 12V to 19V converter, which were each powered by a 4S 

LiPo battery. The USB hub and RealSense camera were not integrated into the system and power circuit 

like originally planned. The second Arduino Mega board, inside the power box, was intended for digitally 

monitoring voltages and currents in the power box. However, due to more space being needed and this 

being beyond the scope of the project, this board was removed. This process included removing the board’s 

respective step-down voltage converter and wires connecting to the busbar terminal inside of the power 

box.  

To ensure each device would be powered and connected safely, certain types of connectors were 

used and soldered together, and wire ends were also tinned. XT60 connectors were soldered, and covered 

in heat shrink tubing, to the three sets of wires serving as the power inputs from the batteries to the power 

box. Wire ends from the two 24V outputs, for the ESCs and thrusters, were soldered to XT60 connectors 

and covered in heat shrink tubing. Two more XT60 connectors each had a set of wires soldered to it and 

covered in heat shrink tubing. These connectors were then plugged into the XT60 connectors from the two 

24V outputs. The other ends of these wires were put into screw terminals, which were also connected to the 

ESCs’ red and black wires. Screw terminals were used again to connect the ESCs to the thrusters, 

connecting the white, green and blue wires of each. The wire ends from the last 24V output on the power 

box were tinned and screwed into a barrel connector. This connection was used for the LiDAR data box. 

The wires for the 9V and 12V outputs on the box were also tinned and each screwed into their own barrel 

connector. The 9V connection was used for the Arduino Mega and the 12V connection was for the router. 

Input wires on the two 12V to 19V converters were soldered to extra wire to extend the length and this 

connection was covered with heat shrink tubing. The input and output wire ends of both converters were 

then tinned and screwed into barrel connectors. The 19V output on both are each for a Simply NUC 

computer. 

Four Turnigy High Capacity 10000 mAh 4S LiPo Batteries were used to power the whole system, 

however a fifth battery could have been used (specifically for the third input on the power box). The 

batteries were placed in the pontoon of the test boat during testing, with two batteries in each pontoon. Two 

batteries were connected to the power box to power it and the other two batteries connected to the two 12V 

to 19V converters to provide power to the two computers. The components sat inside the plastic bin portion 

in the middle of the test boat, connecting to their respective connectors and outputs. The LiDAR itself was 

mounted to the front of the boat. The power box sat in the front of the bin while the Arduino Mega board, 

LiDAR databox, and two 12V to 19V converters were on top of the power box lid. The router sat at the 

back of the bin with the two computers and two ESCs on either side of it.  
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Image 12. The final wiring schematic and layout of the components and sensors. 

 

Image 13. The original and final component list. The original list is on the left, while the final list 

is on the right; the arrows are indicating the changes. 

C. Sensor Mount Design 

Over the course of this semester, sensor mounting was split into two portions. The first portion 

focused on mounting the sensors to the newly fabricated vessel. Since this was a brand-new boat, any 
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mounts that were previously made would not work or were ruined from the previous competition vehicle 

when the boat capsized. The new mounts that were to be made needed to fill a certain number of criteria 

when being designed. 

Given the insight observed from the previous year’s competition, the winning teams’ featured 

mounts that were adjustable. Whether it was their Lidar, camera, or any other sensor, each team had some 

sort of articulation for adjusting. Image 14 shows the Roboboat 2019 competition winner’s boat which 

features multiple adjustable mounts. This became a big inspiration and goal for the design of the new boat's 

sensor mounts. 

 

Image 14. Institut Teknologi Sepuluh Nopember’s 2019 competition boat.  

Since the school has many 3D printers, another goal was the ability to have spare mounts in case 

of damage and 3D printing offers a unique opportunity to not only reproduce the same result multiple times, 

but to manufacture in quick succession. These two guidelines were the driving force for the design process 

in CAD, aside from the physical limitations of the dimensions of the sensors themselves.  

The first mount to be created was the modular fin mount shown in image 15. The fin features quick 

attachment and detachment from the hull in case of thruster failure or damage. This was an issue from the 

previous year’s boat since the thrusters were hard to remove when there was a technical difficulty 

considering they were attached directly to the hull with epoxy. This modular fin design improves upon this 

by having the ability to have multiple thrusters ready to go at any time in case of failure and quickly re-set 

back up the boat.  
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Image 15. An image depicting the modular fin mounts. 

Upon closer inspection, the fins feature four countersunk holes for the M3 screws used to secure 

the thrusters to the fin. Once attached, two cotter pins go straight through the base mount and fin to secure 

each fin from falling off during operation. The base mount itself is the only portion directly mounted to the 

boat hull, which is to be secured with maritime epoxy. 

The next mount created for the new boat was one that is both modular and adjustable. Since the 

highest priority sensor needed for testing was the Lidar, that was the main focus for the mount to be designed 

and manufactured. Image 16 shows the final rendering of the Lidar mount. 

 

 

Image 16. An image depicting the Lidar mount. 

The mount features an angular adjustment at which the lidar is locked in at. There are two printable 

pieces, the base cross beam  mount and the base plate that the lidar attaches directly to. The base plate 

attaches to the Lidar with 4 M5 x 10 socket head cap screws with M5 hex nuts. The hinge uses a 0.047” 
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diameter rc servo rod. The base mount uses a total of four 4-40 x ½” socket head cap screws to attach to 

two 8020 rails attached directly to the boat as well as a ¼” cotter pin to lock in the angle. The mount can 

adjust by upwards of 60 degrees from being level. This allows for adjustments of the bounds of the vertical 

resolution of  the point cloud without having to adjust in software. 

 

Unlike the modular fins, the Lidar mount never finished manufacturing. An Ender 3 was purchased 

and a Prusa Mk. 3 i3S was borrowed to speed up manufacturing time however both printers were damaged 

to the point of stopping the manufacturing process altogether. The Prusa was the first printer to be out of 

commission with a bad first layer adhesion causing a “blob” of filament to mold around the entire hot end 

itself which hardened and tore out the thermistor wire (the wire that regulates the temperature). This was 

an inexpensive fix although the time was an issue. The part itself was proprietary and unfortunately only 

shipped from the manufacturer itself, who is based out of the Czech Republic, and features a 3-week 

shipping time due to COVID 19 and international shipping constraints. The Ender 3 failed on the very next 

print when the extruder was clogged due to unknown reasons and eventually broke the adapter for the 

Bowden tube connection to the extruder driver. This was also an inexpensive part to replace but shipping 

took long due to COVID as well. When it was clear that the testing was primarily going to be done on the 

boat given to the team by the Tallahassee campus, focus was given to making sure the sensors were properly 

mounted to the testing boat. The Lidar fortunately only needed a ¼ - 20 screw to be mounted on an acrylic 

plate previously set up in the prior semester. The fins for the thrusters were also already mounted and did 

not need any modifications other than re-applying epoxy to ensure proper mounting for the fins. The new 

focus was then shifted toward the inside component mounting and Visual Feedback / VectorNav. When 

testing preparations were underway, it was seen that the internal component management was an issue that 

needed to be solved. Computers and routers were being stacked on top of each other like a tower and not 

secured by anything other than gravity. Components were also hard to access, which was an issue the 

previous boat and with the tight spaces. The issue did not arise because of lack of space but rather 

inefficiency in use of the space already available. This led to the solution of creating a quick slotted 

component holder made from foam, which can be seen in image 17. 

 

 
 

Image 17. An image depicting the component mounts. 
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The component mount features easy access to both power and data ports for running cables to and 

from without bending them at weird angles, which could cause issues electrically. This helps utilize the 

space that was being wasted as well as securing the components with the foam. Once the components were 

properly secured, focus was then directed toward setting up the Visual Feedback mount as well as the 

VectorNav. The result can be seen in image 18 and 19.  

 

 
 

Image 18. Visual Feedback mount. 

 

 
Image 19. VectorNav mount. 

  

The VectorNav portion only consisted of two M3 screws that threaded into the top portion of the lid 

and two holes for wire routing. The Visual Feedback consisted of taking a PVC 3” coupler and taping the 

led tape to it. Holes were also drilled out for wires to be run into the center of the coupler which eventually 

was run through holes in the top part of the lid. The coupler itself was epoxied down to the top to ensure a 

strong bond to the lid. Overall, these mounts successfully worked for what was needed for testing. 
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D. Power Requirements 

 Table 6 shows the power requirements of each device used, as listed previously. Each device is 

listed with their rated voltage range, desired voltage, maximum rated current and maximum safety factor 

current. Also included is where to find the pictures of measuring the voltages for each component.  

 

Device 
Rated Voltage 

Range 

Desired 

Voltage 

Measured 

Voltage 

Pictures 

Maximum 

Rated Current 

Max. Safety 

Factor Current 

Simply NUC 

(x2) 
19 V 19 V 

See Appendix C 

and Appendix C 
3.42 A 3 A 

LiDAR 22-26 V 24 V See Appendix C 0.90 A 0.85 A 

Router 12 V 12 V See Appendix C 2.5 A 2.25 A 

ESCs (x2) 7-26 V 24 V 
See Appendix C 

and Appendix C 
30 A 25 A 

Arduino 

Mega 
7-12 V 9 V See Appendix C 1 A 0.85 A 

Table 6. Power requirements for components. 

IV. Software 

This section will thoroughly describe the software platforms and methods used in this project. 

A. Product Design Software 

         The team decided to use the Robotic Operating System (ROS) to implement task solving. ROS 

effectively creates a convenient solution to tie data together and forces all the sensors to communicate via 

the Transmission Control Protocol (TCP) connections. Additionally, due to the nature of ROS and its open 

source environment, existing algorithms written by the sensor manufacturers and other third parties can be 

used in conjunction with custom code and algorithms to make the vehicle exhibit desired behaviors and 

performances. 

         As stated above, for these reasons and its open source nature, ROS is the most realistic and effective 

solution to engineering this robot. Without it, it would be an extremely daunting task that would be very 

difficult to complete within the time frame of the senior design class. 
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The team also decided to use the Arduino library and all its functions. The Arduino is an extremely 

powerful and versatile microprocessor which can be harnessed with its Integrated-Development-

Environment (IDE) to iterate functions that need to be called every moment during runtime. Specifically, 

for this team’s use, it was used to fetch controlled motor commands and will transfer them to the motors 

via a PWM signal. This development IDE was implemented using C++ code. 

B.  Algorithm Design Software 

         ROS, as mentioned previously, is the middleware platform which connects all the data pieces. 

Contained within this environment are applications, or nodes. Data is published as a topic by nodes and 

these topics can be subscribed to by other nodes running simultaneously during the runtime of the ROS 

core application. It is similar to handing off data sets so everything can communicate effectively without 

any particular application taking too many liberties. This is known as a publisher-subscriber (Pub-Sub) 

architecture and is the fundamental nucleus of ROS. 

 

Figure 2. A block diagram of the ROS PUB-SUB system. 

Specifically, in the case of the project, custom nodes containing algorithms were written and implemented 

in ROS. Data generated by the sensors were sent to ROS in compact data packets. Then, the data was 

processed by algorithms and node packages which work together in conjunction. After, the modified data 

sets were manipulated into commands for the motors that were modified by a controller as the last step. 

After the controller performed its functions, the commands were sent to the motor driver (Arduino) 

microcontroller. The controls were mixed on the Arduino and exported as a PWM command to the speed 

controllers, and in turn, the motors. Below is a diagram explaining the flow of data during runtime. 



21 of 61 
 

 

Figure 3. A Diagram depicting the flow of data in ROS. 

C. Localization 

Before any algorithms could be used and any autonomous locomotion achieved, the vehicle had to 

be localized in its own coordinate frame within ROS. This coordinate frame in the case of the boat needed 

two degrees of freedom. These being movement on the X and movement on the Y axis respectively. As the 

vehicle moves it needs to be able to understand how far it has travelled within the environment and what is 

located within the environment. The boat also needs to know its current speed, acceleration and orientation. 

These last three components make up what is known as odometry in ROS. Using frames of reference, it can 

be established that there will be a frame for each major component of the vehicle as well as a global frame 

that spans infinitely from the point of origin, or where ROS core was started. To achieve a frame of 

reference for odometry, and in turn achieving localization, it is imperative to first establish the boat’s center 

of mass. This point is known as the base_link frame within ROS. Because the LiDAR will generate obstacle 

and environment data in real time, ROS must understand from where this data is being generated. The 

simplest solution that will be implemented is for another reference frame for the LiDAR, called base_laser, 

will be defined. 

Now that there are two defined reference frames for both the LiDAR (Ouster LiDAR) and the 

vehicle we can relate the position of these two frames with a fixed distance because they are static with 

respect to one another. By doing this ROS is informed of where the LiDAR is with respect to the vehicle. 

In turn, this allows the vehicle to understand where obstacle data, which is generated by the LiDAR in its 

own frame, is with respect to itself. This effectively allows obstacle data to be interpreted all from the 

position of the vehicle. At this point the vehicle needs to generate the current speed, position and orientation. 

This is achieved by placing the IMU chip (VectorNav) onto the vehicle. After, a reference frame was 

defined for the IMU in a similar fashion to the LiDAR. The IMU frame was linked to the base frame which 

allows position speed, acceleration, and orientation position to be directly correlated to the vehicle itself. 

The linking of these frames sets up what is commonly known as a transform tree. After this tree of frames 
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is established, ROS will reference the orientation and kinetic information to the global origin point. This 

indicates that the boat is successfully localized in the ROS coordinate frame. 

D. Path Planning 

The algorithms written by the team ran in conjunction to several open-source packages. One 

software wrapper, or collection of packages used, is called Navigation. Navigation contains several sets of 

packages. One of the most heavily used packages within the set is called move_base. Navigation works by 

taking in the generated LiDAR data which is then localized to the vehicle and constructed into what is 

called a costmap (refer to image 4). The costmap is constructed from an array of data values all of which 

are random variables called the occupancy grid. Each cell contains a value of probability. This probability 

being the odds of an obstacle being in the space represented by that array element. Parameters can be altered 

to determine how great the cost would be if the vehicle experienced a collision with an obstacle. Navigation 

will employ move_base to generate movement commands called cmd_vel, or command velocity. In order 

for Navigation to start working its powerful obstacle avoidance algorithms, it must receive a setpoint, which 

is simply a waypoint in the ROS coordinate frame. After the setpoint is achieved, Navigation will generate 

a movement command using move_base. 

Perhaps the most difficult task is generating the waypoints for Navigation to receive. The starting waypoint 

is provided to the team by the competition, so the algorithms are written from that point as the origin. The 

generated points of each respective obstacle are averaged and only one point will represent an entire 

obstacle. Because the navigation channel starts with two buoys, two single points using this method can be 

found with respect to the global frame which is linked to the vehicle. Using the midpoint formula: 

                  𝑚 =  
𝑝1+𝑝2

2
                              (1) 

Aside from the given starting waypoint, the midpoint is the first waypoint passed into Navigation. 

After the boat is at the midpoint location it will need to continue forward with its motion. ROS navigation 

relies heavily on the use of waypoints, so for the boat to continue path planning, a waypoint will need to be 

generated that is some distance forward from the vehicle’s position. This is because the boat may not sense 

the next set of buoys. Therefore, a vector from the midpoint to the rightmost buoy will be determined. This 

vector will then be normalized to unity and rotated 90 degrees. Firstly, the vector to the buoy will be divided 

by its magnitude. Then using linear algebra, the rotational matrix can be applied to force the 90-degree 

rotation. This rotational equation is below, 

             (2) 

If (phi) is evaluated at 90 degrees, the new x coordinate is the negative of the original y coordinate 

and the new y coordinate is the original x coordinate. From this point, the vector assumed to be unity, can 

be multiplied by any value. The higher the value is, the further it will move the new waypoint from the 

midpoint. This can be dynamically changed depending on the situation. To start 25 meters will be used. 

Image 20 below shows each vector as the arithmetic and linear algebra is applied. 
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Image 20. A Visual Representation of the Vector Rotation for the Navigation Channel. 

Theoretically, this new waypoint should be enough to get the vehicle to the next set of buoys. After 

the new buoys are detected, an interrupt will occur. This interrupt will run the first subroutine using the 

next midpoint as the new waypoint. This effectively will repeat the same process as before and place the 

vehicle between the next set of buoys. After, using the vector rotation process twice more, a waypoint will 

be placed to the right of the last set of buoys. From here, the vehicle will be given the origin of the ROS 

coordinate frame as a waypoint and the boat will return to the start of the obstacle. 

         In terms of development environments for syntax checks, the software created within this project 

used a modified version of Visual Studio Code, which can be configured to understand ROS syntax. Using 

C++, most of the functions are defined in custom classes. These classes include detection, task and buoys. 

These classes serve to facilitate their own variables which will be manipulated within each executable. The 

executable will import the data from the ROS topic and, depending on the task, logic was written using 

vector algebra to calculate target waypoints for the boat to travel to. These waypoints generate intended 

speeds which then are ferried to the controller and then the motors. Each task changes and therefore each 

method of logical analysis and task solving will change as well. All this functionality is defined in the 

Visual Studio Code IDE and is compiled similarly. 

Much of the code written for this project can be viewed in the appendix section of this document. 

This code is just a sample of what has been developed over the project period. 

E.  Controller Design 

         The controller for this project follows the proportion-integral-derivative control theory concept. 

This controller theory takes the idea that the desired output can be reached by finding the current error and 

correcting it by driving it to zero. The way the error is driven to zero is by multiplying it by a proportionate 

amount, integrating it to prevent saturation errors and then taking its derivative to prevent an exceptional 

overshoot. Below is a block diagram of the system to further illustrate its concept. 
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Figure 4.  A block diagram of the PID controller. 

This controller was written in C++ and is implemented in the ROS environment. It should be noted 

that the blue and red values are uncontrolled command velocities from the move_base package. After the 

PID controller is implemented, the controlled outputs, or controlled commands velocities will be outputted 

as a ramped function. This ramped function will ensure a smooth output and will directly correlate to smooth 

accelerations. The controller was lightly tested on hardware last semester, and its data was plotted and is 

described in image 21 below. 

 

Image 21. A plot of the PID in action before tuning it. 

With any controller, the gains of each respective channel must be tuned to achieve the most efficient 

curve for the tasks. Over the semester, the PID controller was tuned so that the controller was more 

responsive and able to handle commands better. Image 22 below, shows the updated output of the PID 

controller.  
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Image 22. A diagram of the updated PID in action.  

G. Motor Mixer 

After the PID modifies the output from move_base the command velocities are ferried to the motor 

mixer microcontroller. The motor mixer intakes both information from ROS and the RC receiver and then 

remaps those values into PWM values to be sent to the ESC controlling the thrusters. Since the boat is using 

differential drive, the code takes in a linear x and angular z velocity and by using equations 3 and 4, this 

generates an individual motor signal. 

In the equations, v is the linear velocity, ω is the angular velocity, C1 and C2 are constants that will be 

changed experimentally to trim the motors, and 𝝋1 and 𝝋2 are each thruster.  

         

V. Testing 

The following section will recount the process executed to test the hull, mounts, power and software 

for the project. Also included is an updated testable requirements table with results on if each requirement 

passed or not. 

 

A. Testing Process and Procedure 

 

i. Boat Hull 

 Testing for the boat hull took place in Courtney’s, the Manufacturing Lead, hot tub which simulated 

the actual competition closely because it was fresh water with no tidal current and minimal wave action. 

The boat was placed in the hot tub and eight dive weights each weighing three pounds were arranged in the 

hull. The components weigh ~22 lbs., so 24 lbs. was a close estimate. The timer was started, and the boat 

was observed for 30 minutes to monitor any water encroaching the interior of the hull. After 30 minutes it 

was seen that there was no water in the interior portion. This can be seen in images 23 and 24. Also, the 

(3) 
 
(4) 
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waterline was measured to be three inches on each side and a level was placed on the higher central section 

and it was level throughout the test. For the deflection test, the hull was placed on a table and measured 

from the table to the central portion that would not be in the water. The dive weights weighing 24 lbs. were 

placed in the stern section and measured again. The before and after adding weights can be seen in images 

25 and 26. Image 27 shows the weights placed in the hull during this testing. The boat hull is to have 

minimal weight, so the hull was placed on a scale and weighed. The total weight of the hull and the front 

lid was 18.4 lbs. The hull weighed 14.4 lbs. and the lid weighed 4 lbs. The front lid and hull being weighed 

are seen in images 28 and 29. 

 

 
 

Image 23. The boat hull floating while carrying 24 pounds for 30 minutes with no leakage 

 

 
 

Image 24. The floatation test with the dive weights distributed correctly.  
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              Image 25. The deflection test before weight    Image 26. The deflection test after weight   

 

 
 

Image 27. The dive weights placed in the hull during the deflection test 

 

 
 

Image 28. Front Lid Weight 
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Image 29. Hull Weight 

 

ii.  Mounts, Power, & Software. 

The power, mounts and software system were tested using a prototype boat nicknamed “the tank,” 

as shown in image 30, below. This boat is constructed of two large pontoons and a plastic bin attached by 

steel 80/20 rails. The two pontoons are held in position by rebar. This heavy frame is extremely stable and 

buoyant. This allows for safe testing of equipment and power without risk of damaging or flipping the boat, 

should a test fail.  

 
 

Image 30. Tank, the test boat. 

 

First, the output voltage of the wires that were used for the components were tested according to 

Table 6. Before any test, the batteries were checked to ensure they were within a range of 14.8 V to 16.7 V 

(optimally above 15.5 V). After the components were plugged in, the voltages could then be checked to 

make sure the voltages were still the same. 

To begin with, the power and software, specifically the remote-control portion of the code, were 

tested in a pool to ensure that the safety features of the system were working in a controlled environment. 

This initial test allowed the power team to validate that their wiring system was set up correctly 

and functioning as expected. The power team was also able to double check the recorded voltages and 

currents were being sent to the sensors correctly. Image 31 shows the tank being tested in the pool.  
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Image 31. An image demonstrating the manual control capabilities.   

 

This test also proved the abilities of the remote control. Additionally, it demonstrated that the remote 

control is not only able to manually, but also allowed for three different modes. These modes make up the 

team’s software safety system. The boat can operate in autonomous mode, which is denoted by a blue led 

light, manual, a yellow led light, and red, which signifies that the boat has been put into safety mode.  

 

The safety switch is triggered using the remote control which is triggered by a toggle switch on the 

controller. When triggered, the microcontroller will not send PWM signals to the electronic speed 

controllers which effectively halts any commands being sent to the thrusters. This will ensure that with the 

safety switch being triggered, there will be no possibility of the boat moving allowing for safe handling of 

the boat in the case of an emergency. 

 

Once this test passed, the next step of the testing procedure was to test the boat in the bay to have 

space to test the autonomous software. During this test, the cost map created by combining our sensors with 

the ROS navigation stack and move base was tested. This cost map is in image 32, below.  

  

  
 

Image 32. An image of the costmap generated during testing on the bay using ROS navigation stack 

and move base.  

  

This test proved the boats ability to follow waypoint commands while identifying objects and 

calculating the best path forward.  
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The final test completed while on the water was the straight-line test. This test proved the validity of 

the code when driving the vehicle in a straight line. This test was essential to test the boat's ability to 

complete the mandatory navigation path for the competition. This task requires the boat to enter a straight 

channel between two buoys that extends between 50 to 100 ft to a second set of buoys that mark the end of 

the channel. A mockup of the navigation channel is displayed in image 33 below.  

 

 
 

Image 33. The above image is an illustration of the mandatory navigation channel.  

 

B. Testable Requirements & Results 

Below is a tabulated list of the testable requirements that the team tested (Table 7). It has been 

updated since the original proposed requirements and these changes are shown in the table below. Please 

see Appendix B for the original testable requirements table.  

Requirement Testing Method What is Success? Passed (Y/N) 

Hull 

Hull Floats Place completed hull in a 

swimming pool. 

The hull does not sink, it 

floats. 
Y 

Hull Carries 15 lbs While in the swimming pool, dive 

weights will be added 

incrementally until 15 lbs is 

reached (dive weights are 3 lbs 

each). 

The hull will carry 15 lbs 

with the pontoons only be 

submerged less than 4 

inches. 

Y 

Hull weighs <25 lbs Place hull on scale and read 

weight. 

Weight is < 25 lbs. Y 

Hull doesn’t leak Place hull in pool carrying 15 lbs 

for a minimum of 30 minutes. 

Hull has no water in the 

interior. 
Y 

Minimal Deflection Place 9 lbs on the center section 

and measure deflection with a 

ruler. 

The measured deflection 

will be less than ⅛”. 
Y 
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Hardware/Wiring (Components Not Connected) 

Power output for the Ouster 

OS1-16 LiDAR (not 

connected) 

Using a multimeter, measure the 

voltage output from the power 

source to the Ouster OS1-16. 

The voltage is within the 

range of 22-26 V, 

optimally at 24 V. 

Y 

Power output for the two 

ESCs (not connected) 

Using a multimeter, measure the 

voltage output from the power 

source to the two ESCs. 

The voltage, for each 

ESC, is within the range 

of 7-26 V, optimally at 16 

V. 

Y 

Power output for the 

Arduino Mega (not 

connected) 

Using a multimeter, measure the 

voltage output from the power 

source to the Arduino Mega. 

The voltage is within the 

range of 7-12 V, optimally 

at 9 V. 

Y 

Power output for the 

NETGEAR N900 Wireless 

Router (not connected) 

Using a multimeter, measure the 

voltage output from the power 

source to the NETGEAR N900 

Wireless Router. 

The voltage is within the 

range of 12-19 V.  
Y 

Power output for the two 

Simply NUC computers 

(not connected) 

Using a multimeter, measure the 

voltage output from the power 

source to the Simply NUCs. 

The voltage is within the 

range of 12-19 V. 
Y 

Hardware/Wiring (Components Connected and ON) 

Power output connection to 

the Ouster OS1-16 LiDAR 

(connected) 

Using a multimeter, measure the 

voltage output and current draw to 

the Ouster OS1-16. After 

measuring the voltage, divide the 

maximum allowed power by this 

measured voltage to calculate the 

maximum allowed current.  

The voltage is within the 

range of 22-26 V, 

optimally at 24 V. The 

power is within the range 

of 14-20 W (peak 22 W at 

startup).   

Y 

Power output connection to 

the two ESCs (connected) 

Using a multimeter, measure the 

voltage output and current draw to 

the two ESCs. 

The voltage, for each 

ESC, is within the range 

of 7-26 V, optimally at 16 

V. The max current 

(constant), for each ESC, 

is 30 A. 

Y 

Power output connection to 

the Arduino Mega 

(connected) 

Using a multimeter, measure the 

voltage output and current draw to 

the Arduino Mega. 

The voltage is within the 

range of 7-12 V, optimally 

at 9 V. 

Y 

Power output connection to 

the NETGEAR N900 

Wireless Router 

(connected) 

Using a multimeter, measure the 

voltage output and current draw  

to the NETGEAR N900 Wireless 

Router. 

The voltage is within the 

range of 12-19 V. The 

current does not exceed 

2.5  A. 

Y 

Power output connection to 

the two Simply NUC 

computers (connected) 

Using a multimeter, measure the 

voltage output and current draw to 

the Simply NUCs. 

The voltage is within the 

range of 12-19 V. The 

current must not exceed 3 

A 

Y 
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Power output connection to 

the Ouster OS1-16 LiDAR 

(connected) 

The LiDAR will be turned on and 

observed for 3 minutes. 

The LiDAR runs 

smoothly without any 

brownouts, shutting off, 

malfunctioning, or 

overheating. 

Y 

Power output connection to 

the two ESCs (connected) 

The two ESCs will be turned on 

and observed for 3 minutes. 

The two ESCs run 

smoothly without any 

brownouts, shutting off, 

malfunctioning, or 

overheating. 

Y 

Power output connection to 

the Arduino Mega 

(connected) 

The Arduino Mega will be turned 

on and observed for 3 minutes. 

The Arduino Mega runs 

smoothly without any 

brownouts, shutting off, 

malfunctioning, or 

overheating. 

Y 

Power output connection to 

the NETGEAR N900 

Wireless Router 

(connected) 

The NETGEAR N900 will be 

turned on and observed for 3 

minutes. 

The NETGEAR N900 

runs smoothly without 

any brownouts, shutting 

off, malfunctioning, or 

overheating. 

Y 

Power output connection to 

the two Simply NUC 

computers (connected) 

The Simply NUCs will be turned 

on and observed for 3 minutes. 

The Simply NUCs run 

smoothly without any 

brownouts, shutting off, 

malfunctioning, or 

overheating. 

Y 

ESCs and Thrusters Run the thrusters, which are 

connected to the ESCs, to max 

power. Measure the voltage and 

the current. 

The voltage does not 

exceed 26 V, and the 

current does not exceed 30 

amps. 

Y 

Turnigy High Capacity 

10000mAh 4S LiPo 

Batteries 

During testing, check the voltage 

output from the batteries. 

The voltage range is 

maintained at 14.8-16.3 

V. 

Y 

Sensor Design 

Sensor mounts articulate Sensors will be placed on the 

mount and the angle will be 

adjusted by raising and lowering 

the mount. 

Mount is able to adjust to 

different angles. 
Y 

Sensor mount will be 

adaptable 

Mounts created will be modular to 

fit onto two 80/20 rails. 

Mount will fit on the 

80/20 rail showing that the 

sizing is correct and other 

mounts can be made using 

these sizings. 

Y 

Mounts are easily 

replaceable 

The mounts will be 3D printed 

and spares will be made.  

Print can be made on most 

3D printer beds with 

common filament (PLA or 

Y 
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PETG). 

Software 

Boat detects obstacles Obstacles will be introduced in a 

controlled manner and the data 

will be logged.  

Software accurately and 

repeatedly identifies 

obstacles.  

Y 

A PID controller is capable 

of creating smooth 

continuous motion. 

System will be driven using a PID 

controller. 

System moves in a smooth 

and continuous manner.  
Y 

Boat Localized System will be traveled around a 

specific path several times and the 

data logged. 

The data points gathered 

at each point will agree 

with each other (within a 

10% margin of error). 

Y 

Basic Waypoint Navigation 

Completed 

System will be tasked with a 

waypoint within ROS.  

System arrives at the 

waypoint within a 

reasonable amount of 

time. 

Y 

Table 7. Testable Requirements Checklist. 

These compiled requirements served as a checklist for everything needed to stay efficient, productive, and 

successful during the test of the vehicle. 

VI. Conclusion 

This project was the culmination of three semesters of work from two different teams. From the 

design of the hull, to the creation of the boat and testing of the system, this project created a basis from 

which future teams can start from and build to compete in future Roboboat competitions. This paper is an 

attempt to demonstrate the work done on this project. 
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Appendix A 

The PID Node Executable 

 

/************************************************ 

 *   Mark Hartzog  <markthartzog@gmail.com>     * 

 ************************************************/ 

 

#include "ros/ros.h" 

#include "geometry_msgs/Twist.h" 

#include "controller/Drive.h" 

#include "stdio.h" 

#include "pid.h" 

 

// Define Global Variables 

 

float linear_vel; 

float angular_vel; 

float process_var_x = 0.0; 

float process_var_z = 0.0; 

float previous_error_x = 0.0; 

float previous_error_z = 0.0; 

 

// Define callback to unfiltered cmd_vel 

void cmdvelCallback(const geometry_msgs::Twist vel){ 

 

// Set the x and z equal to data published by an unfiltered cmd_vel 

linear_vel = vel.linear.x; 

angular_vel = vel.angular.z; 

 

} 

 

 

int main(int argc, char **argv) { 

 

// Initialize ROS node 

    ros::init(argc, argv, "pid"); 

 

    ros::NodeHandle nh; 

 

// Subsrcribe to unfiltered cmd_vel 

    ros::Subscriber sub = nh.subscribe("/cmd_vel", 1, cmdvelCallback); 

 

// Define publisher for filtered cmd_vel 
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    ros::Publisher controlled = nh.advertise<controller::Drive>("/controlled_velocities", 1); 

 

// Define a loop rate to prevent overflow of data to the thread 

    ros::Rate loop_rate(25); 

 

// Define a handler for the PID class 

    PID pid; 

 

    // Define the PID gains and feed them into the Class 

    // In Order: Kd, Ki, Kd, dt 

 

    float pgain_x = 0.025; 

    float igain_x = 0.0028; 

    float dgain_x = 0.0066; 

    float dt_x = 0.052; 

    float max_x = 2.0; 

    float min_x = -2.0; 

 

    // Define the PID gains and feed them into the Class 

    // In Order: Kd, Ki, Kd, dt 

 

    float pgain_z = 0.025; 

    float igain_z = 0.0033; 

    float dgain_z = 0.0062; 

    float dt_z = 0.052; 

    float max_z = 1.0; 

    float min_z = -1.0; 

 

 

    // Define an object Twist 

    geometry_msgs::Twist vel; 

 

    // Define an object Twist 

    controller::Drive drive; 

 

    // Take in the X the goals 

    pid.valueslinear(pgain_x, igain_x, dgain_x, dt_x, max_x, min_x); 

    // Take in the Z the goals 

    pid.valuesangular(pgain_z, igain_z, dgain_z, dt_z, max_z, min_z); 

 

    // Define the increment variables 

    float increment_x = 0.0; 

    float increment_z = 0.0; 
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    ROS_INFO("The PID controller is on..."); 

 

while (ros::ok()) { 

 

    // Checks the linear input to create limiter 

     

    if (linear_vel > max_x){ 

        ROS_WARN("\nThe incoming linear cmd_vel exceeds limits. Setpoint being set to ([%f]):", max_x); 

        linear_vel = max_x;  

    } else if (linear_vel < min_x){ 

        linear_vel = min_x; 

        } 

    // Checks the angular input to create limiter 

    if (angular_vel > max_z){ 

    ROS_WARN("\nThe incoming angular cmd_vel exceeds limits. Setpoint being set to ([%f]):", min_x); 

        angular_vel = max_z; 

    } else if (angular_vel < min_z){ 

        angular_vel = min_z; 

        } 

 

    // Call the control function of the linear x 

    increment_x = pid.controllinear(linear_vel, process_var_x, previous_error_x); 

    // Call the control function of the angular z 

    increment_z = pid.controlangular(angular_vel, process_var_z, previous_error_z); 

 

    // Feed in previous error 

    previous_error_x = linear_vel - process_var_x; 

    previous_error_z = angular_vel - process_var_z; 

 

    // Add new increment contribution to the previous process variable 

    process_var_x += increment_x; 

    process_var_z += increment_z; 

 

    // Set the velocities equal to the publisher data 

    drive.forward = process_var_x; 

    drive.turn = process_var_z; 

 

    // Publish 

    controlled.publish(drive); 

 

    // Spin and sleep 

    ros::spinOnce(); 

    loop_rate.sleep(); 
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} 

 

    return 0; 

 

} 

 

The PID Header File 

 

/* 

Mark Hartzog <markthartzog@gmail.com> 

Special thanks to Bradley J. Snyder <snyder.bradleyj@gmail.com> 

*/ 

 

#include "ros/ros.h" 

#include "cmath" 

 

class PID { 

 

public: 

 

    // Define all varibles for linear 

    float KP_X; 

    float KD_X; 

    float KI_X; 

    float dt_X; 

    float max_X; 

    float min_X; 

    float error_X; 

    float integral_X; 

    float derivative_X; 

    float previous_error_X; 

 

    // Define all varibles for angular 

    float KP_Z; 

    float KD_Z; 

    float KI_Z; 

    float dt_Z; 

    float max_Z; 

    float min_Z; 

    float error_Z; 

    float integral_Z; 

    float derivative_Z; 

    float previous_error_Z; 
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    // The PID function prototype which allows the transfer of values from the main exe for the linear control 

    void valueslinear(float KP_X, float KI_X, float KD_X, float dt_X, float max_X, float min_X); 

 

    // The PID function prototype which allows the transfer of values from the main exe for the angular 

control 

    void valuesangular(float KP_Z, float KI_Z, float KD_Z, float dt_Z, float max_Z, float min_Z); 

     

    // Defines the control loop function feeds in setpoint variable and process variable 

    float controllinear(float SP_X, float PV_X, float prev_err_x); 

 

     // Defines the control loop function feeds in setpoint variable and process variable 

    float controlangular(float SP_Z, float PV_Z, float prev_err_z); 

 

    // Define an error return for the derivative path 

    float feedbackerror(float pre_x_er); 

 

}; 

 

 

// The PID function definition 

void PID::valueslinear(float gk, float gi, float gd, float delt, float h, float l){ 

 

// Delete records of the past and clear old errors 

 

previous_error_X = 0.0; 

integral_X = 0.0; 

 

// Set variables equal to variables fed in from the main. 

KP_X = gk; 

KI_X = gi; 

KD_X = gd; 

dt_X = delt; 

max_X = h; 

min_X = l; 

 

} 

 

// The PID function definition 

void PID::valuesangular(float gk, float gi, float gd, float delt, float h, float l){ 

 

// Delete records of the past and clear old errors 

 

previous_error_Z = 0.0; 

integral_Z = 0.0; 
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// Set variables equal to to variables fed in from the main. 

KP_Z = gk; 

KI_Z = gi; 

KD_Z = gd; 

dt_Z = delt; 

max_Z = h; 

min_Z = l; 

 

} 

 

float feedbackerror(float pre_x_er){ 

 

} 

 

float PID::controllinear(float SP_X, float PV_X, float prev_err_x){ 

 

    // Define the loop variables used for processing 

    float proportional_output; 

    float integral_output; 

    float derivative_output; 

    //Redefine total output at 0 

    float total_output; 

     

    //ROS_INFO("The derivative gain: ([%f])", KD_X); 

    // Define the error between the setpoint and the process variable 

    error_X = (SP_X - PV_X); 

 

    // Multiply by the proportion amount and define the output 

    proportional_output = (KP_X * error_X); 

 

    // Define the integrator summer 

    integral_X += (error_X * dt_X); 

     

    // Define the integrator output 

    integral_output = (KI_X * integral_X); 

 

    // Define the differentiator 

    derivative_X = (error_X - prev_err_x) / dt_X; 

 

    // Define the differential output 

    derivative_output = (KD_X * derivative_X); 

 

    // Define the total output 
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    total_output = proportional_output + integral_output + derivative_output; 

     

    return total_output; 

 

} 

 

float PID::controlangular(float SP_Z, float PV_Z, float prev_err_z){ 

 

    // Define the loop variables used for processing 

    float proportional_output = 0.0; 

    float integral_output = 0.0; 

    float derivative_output = 0.0; 

    float integral_Z = 0.0; 

    float derivative_Z =0.0; 

 

    // Redefine output as 0 

    float total_output = 0.0; 

 

    // Define the error between the setpoint and the process variable 

    error_Z = (SP_Z - PV_Z); 

 

    // Multiply by the proportion amount and define the output 

    proportional_output = (KP_Z * error_Z); 

 

    // Define the integrator summer 

    integral_Z += (error_Z * dt_Z); 

     

    // Define the integrator output 

    integral_output = (KI_Z * integral_Z); 

 

    // Define the differentiator 

    derivative_Z = (error_Z - prev_err_z) / dt_Z; 

 

    // Define the differential output 

    derivative_output = (KD_Z * derivative_Z); 

 

    // Define the total output 

    total_output = proportional_output + integral_output + derivative_output; 

     

    //Save error record 

    previous_error_Z = error_Z; 

 

    return total_output; 
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} 

 

The Waypoint Solver Algorithm 

 

/***************************** 

 *   2020 by Mark Hartzog              * 

 *   and Michael Kirke                     * 

 *   markthartzog@gmail.com         * 

 *   kirkeml1997@gmail.com          * 

 *                                                      * 

 *****************************/ 

 

#include "ros/ros.h" 

#include "ros/time.h" 

#include "std_msgs/String.h" 

#include "std_msgs/String.h" 

#include "geometry_msgs/Pose.h" 

#include "geometry_msgs/Twist.h" 

#include <costmap_converter/ObstacleArrayMsg.h> 

#include <move_base_msgs/MoveBaseAction.h> 

#include <actionlib/client/simple_action_client.h> 

#include <iostream> 

#include <array> 

#include <cmath> 

#include <math.h>   

 

// Define global variables 

 

bool first_bouy_reached = false; 

bool second_waypoint_reached = false; 

float PI = 3.14159265; 

bool detection = false; 

 

class Task{ 

 

    public: 

 

    Task get; 

 

    void vectormath(float ly, float ry, float lx, float rx, float scale, float &wpx, float &wpy){ 

 

        float u_y = ly - ry; 

        float u_x = lx - rx; 

        ROS_INFO("Vector component for x: ([%lf])", u_x); 
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        ROS_INFO("Vector component for y: ([%lf])", u_y); 

        // Call the normalize method 

        float normalized_u_x = (u_x / (sqrt((pow(u_x, 2.0)) + (pow(u_y, 2.0))))); 

        float normalized_u_y = (u_y / (sqrt((pow(u_x, 2.0)) + (pow(u_y, 2.0))))); 

        ROS_INFO("The normalized vector component for x: ([%lf])", normalized_u_x); 

        ROS_INFO("The normalized vector component for y: ([%lf])", normalized_u_y); 

 

        float angle_between_buoys = (atan2(u_y, u_x)); 

        float magnitude_u = sqrt(pow(u_x, 2.0) + pow(u_y, 2.0)); 

 

        // Perform the 90 deg rotation 

        float sx = 0.0; 

        float sy = 0.0; 

        sx = normalized_u_x; 

        sy = normalized_u_y; 

        normalized_u_x = sy; 

        normalized_u_y = -1 * sx; 

 

        //Scale up the vector  

 

        wpx = normalized_u_x * scale; 

        wpy = normalized_u_y * scale; 

 

        ROS_INFO("The scaled rotated vector component for x: ([%lf])", wpx); 

        ROS_INFO("The scaled rotated vector component for y: ([%lf])", wpy); 

         

    } 

 

    bool navgoal(float x, float y){ 

 

        bool flag = false; 

 

        typedef actionlib::SimpleActionClient<move_base_msgs::MoveBaseAction> MoveBaseClient; 

 

            // Tell the action client that we want to spin a thread by default 

            MoveBaseClient ac("move_base", true); 

 

            // Wait for the action server to come up 

            while(!ac.waitForServer(ros::Duration(5.0))){ 

                ROS_INFO("Waiting for the move_base action server to come up"); 

            } 

                move_base_msgs::MoveBaseGoal goal; 

 

                ROS_INFO("Setting x Waypoint to: ([%lf])", x); 
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                ROS_INFO("Setting y Waypoint to: ([%lf])", y); 

 

                // Send a goal to the robot to move towards the first set of buoys 

                goal.target_pose.header.frame_id = "map"; 

                goal.target_pose.header.stamp = ros::Time::now(); 

 

                goal.target_pose.pose.position.x = x; 

                goal.target_pose.pose.position.y = y; 

 

                //Need to fix this to be a dynamic quaternion. Not hardcoded to 1.0. 

                //geometry_msgs::Pose orient; 

 

                goal.target_pose.pose.orientation.w = 1.0; 

 

                ROS_INFO("Sending goal"); 

                ac.sendGoal(goal); 

 

                ac.waitForResult(); 

                 

                if(ac.getState() == actionlib::SimpleClientGoalState::SUCCEEDED){ 

                    ROS_INFO("The first set of bouys were reached"); 

                    flag = true; 

                    //ros::shutdown(); 

                }  

 

                else{ 

                    ROS_INFO("The rover failed to move for some reason"); 

                    ros::shutdown(); 

                } 

 

         

 

    } 

} 

 

class Buoy{ 

 

    Buoy buoyLeft; 

    Buoy buoyRight; 

 

    public: 

 

    float point1_x; 

    float point2_x; 
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    float point3_x; 

    float point1_y; 

    float point2_y; 

    float point3_y; 

    float angle; 

     

 

    float average_x(){ 

        float calcX = (point1_x + point2_x + point3_x) / 3; 

        //ROS_INFO("The x position: [%lf]", calcX); 

        return calcX; 

    } 

 

    float average_y(){ 

        float calcY = (point1_y + point2_y + point3_y) / 3; 

        //ROS_INFO("The y position: [%lf]", calcY); 

        return calcY; 

    } 

 

    float anglefinder(float y, float x){ 

 

        float angle = (atan2(y, x)); 

        return angle; 

    } 

 

    float midpoint_locator(float p1, float p2){ 

 

        float midpoint = ((p1 + p2) / 2); 

        return midpoint; 

    } 

}; 

// Defines the position callpack function 

 

void positionCallback(const costmap_converter::ObstacleArrayMsg pos){ 

 

    buoyLeft.point1_x = pos.obstacles[0].polygon.points[0].x; 

    //ROS_INFO("The x points: [%lf]", buoyLeft.point1_x); 

    buoyLeft.point2_x = pos.obstacles[0].polygon.points[1].x; 

    buoyLeft.point3_x = pos.obstacles[0].polygon.points[2].x; 

 

    buoyLeft.point1_y = pos.obstacles[0].polygon.points[0].y; 

    buoyLeft.point2_y = pos.obstacles[0].polygon.points[1].y; 

    buoyLeft.point3_y = pos.obstacles[0].polygon.points[2].y; 
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    buoyRight.point1_x = pos.obstacles[1].polygon.points[0].x; 

    //ROS_INFO("The x points: [%lf]", buoyRight.point1_x); 

    buoyRight.point2_x = pos.obstacles[1].polygon.points[1].x; 

    buoyRight.point3_x = pos.obstacles[1].polygon.points[2].x; 

 

    buoyRight.point1_y = pos.obstacles[1].polygon.points[0].y; 

    //ROS_INFO("The y points: [%lf]", buoyRight.point1_y); 

    buoyRight.point2_y = pos.obstacles[1].polygon.points[1].y; 

    buoyRight.point3_y = pos.obstacles[1].polygon.points[2].y; 

 

    if ((buoyRight.point1_x != 0) || (buoyRight.point2_x != 0) || (buoyRight.point3_x != 0) || 

(buoyRight.point1_y != 0) || (buoyRight.point2_y != 0) || (buoyRight.point3_y != 0)){ 

        detection = true; 

    } 

    if ((buoyLeft.point1_x != 0) || (buoyLeft.point2_x != 0) || (buoyLeft.point3_x != 0) || (buoyLeft.point1_y 

!= 0) || (buoyLeft.point2_y != 0) || (buoyLeft.point3_y != 0)){ 

        detection = true; 

    } 

} 

 

int main(int argc, char **argv){ 

    ros::init(argc, argv, "straight_line_task"); 

 

    // Declares and defines node object 

    ros::NodeHandle nh; 

 

    // Subscribes to the the obstacle detection package to gather position data 

    ros::Subscriber sub = nh.subscribe("/costmap_converter/costmap_obstacles", 10000, positionCallback); 

 

    while (ros::ok()) {     

 

        ros::spinOnce(); 

 

        // Calculates midpoint between the two. 

 

        if (detection == true){ 

 

             if(first_bouy_reached == false){ 

                float midpoint_x = buoyRight.midpoint_locator(buoyLeft.average_x(), buoyRight.average_x()); 

                float midpoint_y = buoyRight.midpoint_locator(buoyLeft.average_y(), buoyRight.average_y()); 

                first_bouy_reached = get.navgoal(midpoint_x, midpoint_y); 

            } 

        } 
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        // Define the straight line action 

        /*if(first_bouy_reached == true){ 

            typedef actionlib::SimpleActionClient<move_base_msgs::MoveBaseAction> MoveBaseClient; 

            //tell the action client that we want to spin a thread by default 

            MoveBaseClient ac("move_base", true); 

            //wait for the action server to come up 

            while(!ac.waitForServer(ros::Duration(5.0))){ 

                ROS_INFO("Waiting for the move_base action server to come up"); 

            } 

                move_base_msgs::MoveBaseGoal goal; 

                float px = key.pointpublisher_x(); 

                float py = key.pointpublisher_y(); 

                ROS_INFO("Setting the next x Waypoint to: ([%lf])", key.average_x()); 

                ROS_INFO("Setting the next y Waypoint to: ([%lf])", py); 

                //we'll send a goal to the robot to move towards the first set of buoys 

                goal.target_pose.header.frame_id = "map"; 

                goal.target_pose.header.stamp = ros::Time::now(); 

                goal.target_pose.pose.position.x = px; 

                goal.target_pose.pose.position.y = py; 

                //Need to fix this to be a dynamic quaternion. Not hardcoded to 1.0. 

                //geometry_msgs::Pose orient; 

                goal.target_pose.pose.orientation.w = 1.0; 

                ROS_INFO("Sending goal"); 

                ac.sendGoal(goal); 

                ac.waitForResult(); 

                 

                if(ac.getState() == actionlib::SimpleClientGoalState::SUCCEEDED){ 

                    ROS_INFO("The first set of buoys were reached"); 

                    second_waypoint_reached = true; 

                    //ros::shutdown(); 

                }  

                else{ 

                    ROS_INFO("The rover failed to move for some reason"); 

                    //ros::shutdown(); 

                } 

             

        } */ 

 

    } 

            ROS_INFO("I REACHED THE END OF THE NODE");         

return 0; 

 

} 
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Arduino Motor Mixing Code and Visual Feedback 

 

//*********************************// 

// Brandon Bascetta <brandonbascetta@gmail.com> 

// Toni Weaver <tfs32413@gmail.com> 

//*********************************// 

 

//Include Libraries 

#include "ros.h" 

#include "std_msgs/Int16.h" 

#include "Servo.h" 

#include "FastLED.h" 

 

//Function Prototypes 

 

//Autonomous control 

void cmd_control(int duty_l, int duty_r); 

 

//Manual RC 

void esc_control_manual(); 

 

//Read in rc input 

void rc_read_in(); 

 

//Light Control 

void lightboi(int light_mode); 

 

//Define pins and such 

#define CH1 3 

#define CH2 4 

#define CH5 5 

#define CH6 6 

#define CH8 7 

#define ESCL 10 

#define ESCR 11 

#define LED_PIN 8 

#define NUM_LEDS 256 

 

//Led panel control object 

CRGB leds[NUM_LEDS]; 

 

//Servo objects for esc writing 
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Servo escl; 

Servo escr; 

 

//ros node handler 

ros::NodeHandle nh; 

 

//Some global variables 

int left_duty = 0, right_duty = 0; 

unsigned long ch1 = 0; 

unsigned long ch2 = 0; 

unsigned long ch5 = 0; 

unsigned long ch6 = 0; 

unsigned long ch8 = 0; 

 

//mode for lights 

int mode = 1; 

//1 = manual 

//2 = autonomous 

//3 = kill 

 

//Toni's variables 

//Variables for the code 

long thrusterL = 0; 

long thrusterR = 0; 

 

//linear value x 

int linx = 0; 

 

//angular value w 

int omega = 0; 

 

//Velocity map values 

int minV = -10; 

int maxV = 10; 

 

//angular 

int minA = -10; 

int maxA = 10; 

 

//These values represent the output velocities of the thrusters 

int escMin = 1100; 

int escMed = 1500; 

int escMax = 1900; 

long rcescL = 0; 
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long rcescR = 0; 

 

// 

bool manual = false; 

bool lockEngaged = true; 

bool horn = false; 

 

 

//These values reflect general values of the rc transmitter may not be exact numbers 

int rcMed = 1500; 

int rcLow = 980; 

int rcHigh = 2000; 

 

//Calback Functions 

void duty_input_left( const std_msgs::Int16& vall) 

{ 

  left_duty = vall.data; 

} 

 

void duty_input_right( const std_msgs::Int16& valr) 

{ 

  right_duty = valr.data; 

} 

//Setting up ros subscribers 

ros::Subscriber<std_msgs::Int16> sub1("drive_cmd_left" , duty_input_left); 

ros::Subscriber<std_msgs::Int16> sub2("drive_cmd_right" , duty_input_right); 

 

void setup() { 

 

  //Initialize Pin I/O's 

  FastLED.addLeds<WS2812B, LED_PIN, GRB>(leds, NUM_LEDS); 

  pinMode(CH1, INPUT); 

  pinMode(CH2, INPUT); 

  pinMode(CH5, INPUT); 

  pinMode(CH6, INPUT); 

  pinMode(CH8, INPUT); 

 

  //initialize node and topic subscriptions 

  nh.initNode(); 

  nh.subscribe(sub1); 

  nh.subscribe(sub2); 

 

  //default esc signal to 1500 ms 

  left_duty = 1500; 
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  right_duty = 1500; 

 

  //Startup for lights 

  for (int i = 0; i < NUM_LEDS; i++) { 

    leds[i] = CRGB(0, 10, 10); 

    FastLED.show(); 

  } 

 

  for (int i = 0; i < NUM_LEDS; i++) { 

    leds[i] = CRGB(10, 10, 0); 

    FastLED.show(); 

  } 

 

  for (int i = 0; i < NUM_LEDS; i++) { 

    leds[i] = CRGB(10, 0, 0); 

    FastLED.show(); 

  } 

 

  //Attach onject to esc pin and set min and max output 

  escl.attach(ESCL, 1100, 1900); 

  escr.attach(ESCR, 1100, 1900); 

} 

 

void loop() { 

  //check callbacks 

  nh.spinOnce(); 

 

  //check rc 

  rc_read_in(); 

 

  if (lockEngaged == false) { 

 

    //for autonomous control 

    if (manual == false) { 

      nh.loginfo("Autonomous!"); 

      cmd_control(left_duty, right_duty); 

 

    } 

    //for manual mode 

    if (manual == true) { 

      nh.loginfo("Manual!"); 

      esc_control_manual(); 

    } 
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  } 

  lightboi(mode); 

 

} 

 

void cmd_control(int duty_l, int duty_r) { 

 

  //write esc commands from node 

  escl.writeMicroseconds(duty_l); 

  escr.writeMicroseconds(duty_r); 

} 

 

void rc_read_in() { 

  ch1 = pulseIn(CH1, HIGH); 

  ch2 = pulseIn(CH2, HIGH); 

  ch5 = pulseIn(CH5, HIGH); 

  ch6 = pulseIn(CH6, HIGH); 

  ch8 = pulseIn(CH8, HIGH); 

 

  if (ch8 < 1500) { 

    horn = true; 

  } 

  else { 

    horn = false; 

  } 

 

  if (ch5 > 1500 || ch5 < 900) 

  { 

    lockEngaged = true; 

    //nh.loginfo("Lock Engaged!"); 

    mode = 3; 

    escl.writeMicroseconds(1500); 

    escr.writeMicroseconds(1500); 

    nh.loginfo("Killed!!"); 

 

  } 

 

  else 

  { 

    lockEngaged = false; 

    nh.loginfo("Lock Disbaled!"); 

 

    //Manual/auto switch 

    if (ch6 > 1500) 
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    { 

      manual = true; 

      mode = 1; 

    } 

    else 

    { 

      manual = false; 

      mode = 2; 

    } 

  } 

} 

void esc_control_manual() 

{ 

 

  //input from ch1 for linear velocity and ch2 for angular velocity 

  linx = map(ch1, rcLow, rcHigh, minV, maxV); 

  omega = map(ch2, rcLow, rcHigh, minA, maxA); 

 

 

  //convert to driving each motor 

  thrusterL = linx - omega; 

  thrusterR = (linx + omega) * 0.75; 

 

 

  //convert to pwm for esc 

  rcescL = map(thrusterL, minV, maxV, escMin, escMax); 

  rcescR = map(thrusterR, minV, maxV, escMin, escMax); 

 

  //send command to esc 

  escl.writeMicroseconds(rcescL); 

  escr.writeMicroseconds(rcescR); 

 

 

} 

 

 

void lightboi(int light_mode) { 

 

  //Manual 

  if (light_mode == 1) { 

    for (int i = 0; i < NUM_LEDS; i++) { 

      leds[i] = CRGB(10, 10, 0); 

    } 
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  } 

 

  //Autonomous 

  if (light_mode == 2) { 

 

    for (int i = 0; i < NUM_LEDS; i++) { 

      leds[i] = CRGB(0, 10, 10); 

    } 

 

  } 

 

  //Killed 

  if (light_mode == 3) { 

 

    for (int i = 0; i < NUM_LEDS; i++) { 

      leds[i] = CRGB(10, 0, 0); 

    } 

 

  } 

 

  FastLED.show(); 

} 
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Appendix B 

Requirement Testing Method What is Success? Passed (Y/N) 

Hull 

Hull Floats Place completed hull in a 

swimming pool. 

The hull does not sink, it 

floats. 
 

Hull Carries 15 lbs While in the swimming pool, dive 

weights will be added 

incrementally until 15 lbs is 

reached (dive weights are 3 lbs 

each). 

The hull will carry 15 lbs 

with the pontoons only be 

submerged less than 4 

inches. 

 

Hull weighs <25 lbs Place hull on scale and read 

weight. 

Weight is < 25 lbs.  

Hull doesn’t leak Place hull in pool carrying 15 lbs 

for a minimum of 30 minutes. 

Hull has no water in the 

interior. 
 

Minimal Deflection Place 9 lbs on the center section 

and measure deflection with a 

ruler. 

The measured deflection 

will be less than ⅛”. 
 

Hardware/Wiring (Components Not Connected) 

Power output for the Ouster 

OS1-16 LiDAR (not 

connected) 

Using a multimeter, measure the 

voltage output from the power 

source to the Ouster OS1-16. 

The voltage is within the 

range of 22-26 V, 

optimally at 24 V. 

 

Power output for the two 

ESCs (not connected) 

Using a multimeter, measure the 

voltage output from the power 

source to the two ESCs. 

The voltage, for each 

ESC, is within the range 

of 7-26 V, optimally at 16 

V. 

 

Power output for the kill 

switch Arduino Mega (not 

connected) 

Using a multimeter, measure the 

voltage output from the power 

source to the kill switch Arduino 

Mega. 

The voltage is within the 

range of 7-12 V, optimally 

at 9 V. 

 

Power output for the PID 

Arduino Mega (not 

connected) 

Using a multimeter, measure the 

voltage output from the power 

source to the PID Arduino Mega 

(from the Simply NUC). 

The voltage is 5 V.  

Power output for the USB 

Hub (not connected) 

Using a multimeter, measure the 

voltage output from the power 

source to the USB Hub. 

The voltage is within the 

range of 5-12 V. 
 

Power output for the 

NETGEAR N900 Wireless 

Router (not connected) 

Using a multimeter, measure the 

voltage output from the power 

source to the NETGEAR N900 

Wireless Router. 

The voltage is within the 

range of 12-19 V. Should 

be closer to 19 V due to 

how the power source was 
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made. 

Power output for the Jetson 

Xavier (not connected) 

Using a multimeter, measure the 

voltage output from the power 

source to the Jetson Xavier. 

The voltage is within the 

range of 9-20 V. 
 

Power output for the Simply 

NUC (not connected) 

Using a multimeter, measure the 

voltage output from the power 

source to the Simply NUC. 

The voltage is within the 

range of 12-19 V. 
 

Hardware/Wiring (Components Connected and ON) 

Power output connection to 

the Ouster OS1-16 LiDAR 

(connected) 

Using a multimeter, measure the 

voltage output and current draw to 

the Ouster OS1-16. After 

measuring the voltage, divide the 

maximum allowed power by this 

measured voltage to calculate the 

maximum allowed current.  

The voltage is within the 

range of 22-26 V, 

optimally at 24 V. The 

power is within the range 

of 14-20 W (peak 22 W at 

startup).   

 

Power output connection to 

the two ESCs (connected) 

Using a multimeter, measure the 

voltage output and current draw to 

the two ESCs. 

The voltage, for each 

ESC, is within the range 

of 7-26 V, optimally at 16 

V. The max current 

(constant), for each ESC, 

is 30 A. 

 

Power output connection to 

the kill switch Arduino 

Mega (connected) 

Using a multimeter, measure the 

voltage output and current draw to 

the kill switch Arduino Mega. 

The voltage is within the 

range of 7-12 V, optimally 

at 9 V. 

 

Power output for the PID 

Arduino Mega (connected) 

Using a multimeter, measure the 

voltage output and current draw to 

the PID Arduino Mega (from the 

Simply NUC). 

The voltage is 5 V.  

Power output connection to 

the USB Hub (connected) 

Using a multimeter, measure the 

voltage output and current draw to 

the USB Hub. 

The voltage is within the 

range of 5-12 V. The 

current does not exceed 4 

A. 

 

Power output connection to 

the NETGEAR N900 

Wireless Router 

(connected) 

Using a multimeter, measure the 

voltage output and current draw  

to the NETGEAR N900 Wireless 

Router. 

The voltage is within the 

range of 12-19 V, will 

likely be closer to 19 V. 

The current does not 

exceed 2.5  A. 

 

Power output connection to 

the Jetson Xavier 

(connected) 

Using a multimeter, measure the 

voltage output to the Jetson 

Xavier. 

The voltage is within the 

range of 9-20 V.  
 

Power output connection to 

the Simply NUC 

(connected) 

Using a multimeter, measure the 

voltage output and current draw to 

the Simply NUC. 

The voltage is within the 

range of 12-19 V. The 

current must not exceed 3 

A 
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Power output connection to 

the Ouster OS1-16 LiDAR 

(connected) 

The LiDAR will be turned on and 

observed for 3 minutes. 

The LiDAR runs 

smoothly without any 

brownouts, shutting off, 

malfunctioning, or 

overheating. 

 

Power output connection to 

the two ESCs (connected) 

The two ESCs will be turned on 

and observed for 3 minutes. 

The two ESCs run 

smoothly without any 

brownouts, shutting off, 

malfunctioning, or 

overheating. 

 

Power output connection to 

the kill switch Arduino 

Mega (connected) 

The kill switch Arduino Mega 

will be turned on and observed for 

3 minutes. 

The kill switch Arduino 

Mega runs smoothly 

without any brownouts, 

shutting off, 

malfunctioning, or 

overheating. 

 

Power output connection to 

the PID Arduino Mega 

(connected) 

The PID Arduino Mega will be 

turned on and observed for 3 

minutes. 

The PID Arduino Mega 

runs smoothly without 

any brownouts, shutting 

off, malfunctioning, or 

overheating. 

 

Power output connection to 

the NETGEAR N900 

Wireless Router 

(connected) 

The NETGEAR N900 will be 

turned on and observed for 3 

minutes. 

The NETGEAR N900 

runs smoothly without 

any brownouts, shutting 

off, malfunctioning, or 

overheating. 

 

Power output connection to 

the Jetson Xavier 

(connected) 

The Jetson Xavier will be turned 

on and observed for 3 minutes. 

The Jetson Xavier runs 

smoothly without any 

brownouts, shutting off, 

malfunctioning, or 

overheating. 

 

Power output connection to 

the Simply NUC 

(connected) 

The Simply NUC will be turned 

on and observed for 3 minutes. 

The Simply NUC runs 

smoothly without any 

brownouts, shutting off, 

malfunctioning, or 

overheating. 

 

ESCs and Thrusters Run the thrusters, which are 

connected to the ESCs, to max 

power. Measure the voltage and 

the current. 

The voltage does not 

exceed 26 V, and the 

current does not exceed 30 

amps. 

 

Turnigy High Capacity 

10000mAh 4S LiPo 

Batteries 

During testing, check the voltage 

output from the batteries. 

The voltage range is 

maintained at 14.8-16.3 

V. 

 

Sensor Design 

Sensor mounts articulate Sensors will be placed on the Mount can adjust to  
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mount and the angle will be 

adjusted by raising and lowering 

the mount. 

different angles. 

Sensor mount will be 

adaptable 

Mounts created will be modular to 

fit onto two 80/20 rails. 

Mount will fit on the 

80/20 rail showing that the 

sizing is correct and other 

mounts can be made using 

these sizes. 

 

Mounts are easily 

replaceable 

The mounts will be 3D printed 

and spares will be made.  

Print can be made on most 

3D printer beds with 

common filament (PLA or 

PETG). 

 

Software 

Boat detects obstacles Obstacles will be introduced in a 

controlled manner and the data 

will be logged.  

Software accurately and 

repeatedly identifies 

obstacles.  

 

PID controller is capable of 

creating smooth continuous 

motion. 

System will be driven using PID 

controller. 

System moves in a smooth 

and continuous manner.  
 

Boat Localized System will be traveled around a 

specific path several times and the 

data logged. 

The data points gathered 

at each point will agree 

with each other (within a 

10% margin of error). 

 

Basic Waypoint Navigation 

Completed 

System will be tasked with a 

waypoint within ROS.  

System arrives at the 

waypoint within a 

reasonable amount of 

time.  
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Appendix C 

Measured voltage for one of the Simply NUC computers. 

 

 

 

 

 

 

 

 

 

 

 

Measured voltage for one of the Simply NUC computers. 
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Measured voltage for the LiDAR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Measured voltage for the router. 
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Measured voltage for one of the ESCs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Measured voltage for one of the ESCs. 
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Measured voltage for the Arduino Mega. 
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